TeraCache: Efficient Caching over Fast Storage Devices

Iacovos G. Kolokasis1,2, Anastasios Papagiannis1,2, Foivos Zakkak3, Shoaib Akram4, Christos Kozanitis5, Polyvios Pratikakis1,2, and Angelos Bilas1,2

1Foundation for Research and Technology – Hellas GR, 2University of Crete GR, 3Red Hat Inc., 4Australian National University AU

Fast Storage Devices Available but Analytic Stacks Not Ready

Increasing Memory Demands for Analytics
- Analytic servers use caches for avoiding recomputation (compute caches)
- Cache size is often several times the input dataset size
- DRAM scaling is limited (more $ per GB)
- Analytics resort to high capacity, fast storage devices, such as NVMe

Merging On-Heap and Off-Heap Benefits

Pros
- No Serialization
- High GC Time

Cons
- Low GC Time
- High Serialization

TeraCache: Best of Both Worlds!

Machine Learning Workloads
- RDD caching is critical in Spark
- GC and serialization introduce significant overhead
- TeraCache improves ML workloads performance by 25% over the state-of-the-art