TeraCache: Efficient Caching over Fast Storage Devices

Iacovos G. Kolokasis1,2, Anastasios Papagiannis1,2, Foivos Zakkak3, Shoaib Akram4, Christos Kozanitis2, Polyvios Pratikakis1,2, and Angelos Bilas1,2

1University of Crete
2Foundation of Research and Technology Hellas (FORTH), Greece
3Red Hat, Inc.
4Australian National University
Spark Caching Mechanism

- Stores the result of an RDD
- Essential when an RDD is used across multiple Spark jobs
- Caching avoids recomputation and reduces execution time
- Effective for iterative workloads (e.g., ML, graph processing)
- How much data do we need to cache?

<table>
<thead>
<tr>
<th>Storage Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEMORY_ONLY</td>
</tr>
<tr>
<td>MEMORY_AND_DISK</td>
</tr>
<tr>
<td>DISK_ONLY</td>
</tr>
<tr>
<td>OFF_HEAP</td>
</tr>
</tbody>
</table>

Source: https://spark.apache.org/docs/latest/rdd-programming-guide.html
Increasing Memory Demands!

- Analytics datasets grow at high rate
 - Today ~50ZB
 - By 2025 ~175ZB

- Typical deployments use roughly as much DRAM as the input dataset

- Typically cached data is even larger than the input dataset

Source: Seagate – The Digitization of the World
Cached Data Size Matters

- In-memory caching needs a lot of DRAM
- DRAM density difficult to increase
- Fast storage (NVMe) scales to TBs/device
- Spark already uses fast storage for cached data – However, at high cost
Dilemma: On-heap vs Off-heap NVMe Caching

Executor Memory
- **Execution Memory**
- **Storage Memory**

Serialization / Deserialization

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-heap Cache</td>
<td>No Serialization</td>
</tr>
<tr>
<td>Off-heap Cache</td>
<td>Low GC</td>
</tr>
</tbody>
</table>

Can we avoid Serialization and reduce GC?
Cached Objects Behave Differently

Spark App

Dataset

Create RDD

Persist

Operations

Unpersist

Java Heap

GC
Cached Objects Behave Differently

Spark App

Dataset → Create RDDs → Persist

Operations → Unpersist

GC

Java Heap
Cached Objects Behave Differently

- GC between **persist-unpersist** extremely wasteful
- GC scans all objects in the heap
Cached Objects Behave Differently

Spark App

Dataset

Create RDDs

Persist

Operations

Unpersist

Java Heap

- GC reclaim cached RDDs after unpersist
Our Approach: Treat Cached Objects Differently

- Objects in JAVA follow generational hypothesis

- Opportunity: Nomadic hypothesis observation

- Spark cached objects are
 - Long-lived: Used across multiple Spark jobs (cache)
 - Intermittently-accessed: Long intervals without access (NVMe)
 - Grouped life-times: RDD objects leave the cache at the same time (unpersist)

- Place cached objects in a special heap
TeraCache: Introduce a Second JVM heap on NVMe

- Execution Heap remains as a garbage collected heap
 - Maintains the JVM heap for execution purposes

- The second TeraCache heap has two significant advantages

- No GC: Use persist/unpersist semantics to avoid GC

- No Serialization/Deserialization: Use memory-mapped I/O
TeraCache Design Overview
TeraCache: Design Overview

- **Spark Executor**: Execution Memory, Storage Memory
- **JVM**: JVM heap, TeraCache
- **DRAM**: DR1, DR2
- **NVMe SSD**: mmap()
Spark Knocks on the JVM Door

- Spark notifies JVM for RDD caching
 - At persist/unpersist operations
- Add new TeraFlag word in JVM objects
- JVM creates new object, sets TeraFlag

Spark Application

```
rdd.persist()
```

Spark Runtime

- Store RDD to Storage Memory
- Notify JVM to mark RDD object

JVM

```
JVM heap
```

TeraCache
Spark Knocks on the JVM Door

Spark Application
- `rdd.persist()`

Spark Runtime
- Store RDD to Storage Memory
- Notify JVM to mark RDD object

JVM
- Move to TeraCache during next full GC

- Spark notifies JVM for RDD caching
 - At persist/unpersist operations
- Add new TeraFlag word in JVM objects
- JVM creates new object, sets TeraFlag
TeraCache Design: Avoid GC
How to Avoid GC in TeraCache?

- **Disallow** backward pointers to Heap
- **Move** transitive closure in TeraCache
How To Avoid GC in TeraCache?

- **Disallow** backward pointers to Heap
- Move **transitive closure** in TeraCache
- **Allow** forward pointers from Heap
- Objects in TeraCache **do not move**
- **Fence GC** from following forward pointers
Organize TeraCache in Regions

- Objects that belong to the same RDD have similar life-time
- Organize TeraCache in regions
 - Place objects in regions based on life-time
 - Dynamic size of regions
- Bulk free
 - Reclaim entire region
Bulk Free Regions

- To provide **correct** and **bulk** free
 - **Allow only** pointers within regions
 - Merge regions with crossing pointers when objects move to TeraCache

- Keep a bit map with live regions
 - Track reachable regions from JVM heap in every GC

- During GC marking phase identify active regions
 - Mark the bit array if there is a pointer from the JVM heap to a TeraCache region
TeraCache Design: Avoid Serialization
No Serialization→Memory Mapped I/O

- MMIO allows **same data format** on memory and device
- No explicit device I/O - Only accesses using load/store
- Linux Kernel already supports required mechanisms for MMIO
- We use FastMap [USENIX ATC'20]: Optimize scalability of Linux MMIO
Competition for DRAM Resource

- Execution Memory must reside in DRAM
 - A lot of short-lived data
 - We need large DRAM

- Cached objects are accessed as well
 - E.g., Iterative jobs reuse cached data
 - We need large DRAM

- Can we statically divide DRAM between the heaps?
Dividing DRAM between Heaps

- KMeans (KM)-jobs produce more short-lived data
 - More minor GCs
 - More space for DR1

- Linear Regression (LR)-jobs reuse more cached data
 - More page faults/s
 - More space for DR2

- Dynamic Resizing of DR1, DR2
 - Based on page-fault rate in MMIO
 - Based on minor GCs
Preliminary Evaluation
Early Prototype Implementation

- We implement a prototype of TeraCache based on ParallelGC
 - Place New Generation on DRAM
 - Place Old Generation on fast storage device
 - Explicitly disable GC on Old Generation

- Remaining to be implemented
 - Cached RDDs reclamation
 - Dynamic DR1/DR2 resizing

- Evaluation
 - GC overhead
 - Serialization overhead
TeraCache Improves Performance by 25%

- Compared to Serialization: **TC better up to 37%** (on average 25%)
- Compared to GC + Linux swap: **TC better up to 2x**
TeraCache Reduces GC Time by up to 50%
Conclusions
TeraCache: Efficient Caching over Fast Storage

- Spark incurs high overhead for caching RDDs

- We observe: Spark cached data follow a **nomadic hypothesis**

- We introduce TeraCache which both reduces GC and eliminates serialization by using two heaps (**generational, nomadic**)

- We improve performance of Spark ML workloads by 25% (avg)

- Currently we are working on the full prototype
Thank you for your attention

This work is supported by the EU Horizon 2020 Evolve project (#825061)
Anastasios Papagiannis is supported by Facebook Graduate Fellowship

Iacovos G. Kolokasis
kolokasis@ics.forth.gr
www.csd.uoc.gr/~kolokasis
Feedback

Your feedback is important to us.
Don’t forget to rate and review the sessions.