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Motivation

● Data races in Java are difficult to detect, debug, and reproduce

● Current race detection tools often suffer from:

○ Low precision → false positives, false negatives

○ High overhead → slow performance, small tests only, difficult for large setups

○ Dynamic code generation → Unseen code in large frameworks, missed bugs

● External tools frequently ignore key nuances of the Java Memory Model (JMM)



Objectives

● Build a race detector inside OpenJDK

○ JIT, GC

● Handle JMM semantics correctly

○ Less false negatives, support for implicit orderings

● Provide informative race reports (stack traces, source lines)

● Scale to large real-world applications

○ Large runs, large codes



Contributions

● MaTSa: Managed Thread Sanitizer

○ Implements FastTrack happens-before with vector clocks (but differently)

○ Integrated directly into OpenJDK (interpreter + JIT)

○ Tracks memory accesses, synchronization, and happens-before relations

○ Fast stack reconstruction for past accesses, better error messages

● Comprehensive comparison with Java TSan

● Experimental evaluation on DaCapo, Renaissance, Quarkus

● Impact: Found unknown races, upstream fixes
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Algorithm (briefly)

● Happens-before with vector clocks
○ Every thread gets a vector clock
○ Every lock gets a vector clock
○ Thread synchronizes with lock

■ Clocks get synchronized
■ Captures happens-before

● On every access
○ Log minimum info: thread ID, thread time, write
○ Fast representation, shadow memory 
○ Remember 4 “last” accesses
○ Compare, if no happens-before and one access is a write, race!

■ Reconstruct stack for previous access, print report
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Design Points

● Shadow Memory for efficient metadata storage

○ Stores access log, stack reconstruction logs

○ 4x Heap size

● GC precision trade-off

○ GC migrates objects during compaction, evacuation, tenuring

○ Very high cost of tracking migrations and relocating shadow access logs

○ How about scrapping all info on every GC? (Turns out warnings rarely lost!)

○ Unmap-remap the shadow: Very fast, less total memory used



Design Points

● GC object migration remains an issue

○ Every object is also a lock

○ Solution: Vector clock embedded in object header

○ Follows object migration

○ Works with every GC



Design Points

● Stack trace reconstruction: “Time Travel” for past accesses

○ Reconstruct stack trace for past accesses (but fast)

○ Idea: Use stack event buffers, append-only, restart logging often

○ Immutable buffers, pointers from accesses work

○ “Replaying” stack is fast, small buffers

● Report Map for concise, non-duplicate race warnings

○ Based on source line information (Reconstructed from BCI)

○ Avoid reporting race for same lines of code, even if different objects

○ Reduces redundant warnings, easier to debug



Implementation

● Instrumented interpreter bytecodes (x86) and C1/C2 IR to cover loads/stores

○ C1 & C2 instrumented during parsing phase

■ Intentionally limit optimizations to account for all accesses

○ On every access: create access cell, check for race, add to shadow memory log

● Add callbacks on most java.util.concurrent synchronization mechanisms

○ Establishes happens-before edges

● Instrument every synchronized method/block enter/exit



Design comparison: MaTSa vs Java TSan 

Nuance MaTSa Java TSan

Execution tiers Interpreter + C1/C2 JIT Interpreter-only

Volatile fields Ignored Modeled as a lock/unlock 
operation

Static class initializers Separate internal vector 
clock

Reuses class object vector 
clock

Thread.join Modeled via callbacks at 
stop/join

Not modeled
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Evaluation setup

● Benchmarks

○ DaCapo (subset on JDK 17/21)

○ Renaissance

○ Quarkus (3.8)

● Metrics: Runtime, memory used, number of (grouped) race warnings

● Environment: Xeon Gold 5512U (28C/56T), 256 GiB RAM; G1 GC used



Performance Results
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Overall Results

● Performance: MaTSa is ~15x faster on average than Java TSan 

○ Up to 56x faster

● Scale: MaTSa handles large apps (e.g., Spark via Renaissance) 

○ Impractical with interpreter-only tools

● Memory: Overhead dominated by shadow/stack history



The memory overhead paradox

● Observed while running luindex

○ RSS peak ~740MB with MaTSa enabled

○ RSS peak ~900MB with MaTSa disabled

● JIT instrumentation during the parsing phase prevents certain optimizations

● Results in more garbage collection cycles

○ MaTSa triggered 31 GCs

○ Vanilla triggered 8 GCs



A notable race



Limitations

● Custom synchronization not auto-modeled 

● Scala/akka library internals may create missing HB edges

○ False positives (see Renaissance results)

● Constructor-internal writes may appear racy

○ Cannot be modeled away, as object leakage cases matter



Conclusion

● MaTSa is the first fast, precise JMM-aware race detector
● Integrates cleanly into the JVM

○ Usable in production-sized code
● OpenJDK-native implementation

○ JIT support
● Extensible to other managed languages (e.g., Kotlin, Scala)


