MaTSa: Race Detection in Java

Alexandros Emmanouil Antonakakis
lacovos G. Kolokasis
Foivos S. Zakkak
Angelos Bilas
Polyvios Pratikakis

ICS-FORTH, University of Crete, Red Hat

VMIL 2025
Singapore

Motivation

e Data races in Java are difficult to detect, debug, and reproduce

e Current race detection tools often suffer from:
o Low precision — false positives, false negatives
o High overhead — slow performance, small tests only, difficult for large setups
o Dynamic code generation — Unseen code in large frameworks, missed bugs

e External tools frequently ignore key nuances of the Java Memory Model (JMM)

Obijectives

e Build a race detector inside OpenJDK
o JIT, GC
e Handle JMM semantics correctly
o Less false negatives, support for implicit orderings
e Provide informative race reports (stack traces, source lines)
e Scale to large real-world applications

o Large runs, large codes

Contributions

e MaTSa: Managed Thread Sanitizer
o Implements FastTrack happens-before with vector clocks (but differently)
o Integrated directly into OpenJDK (interpreter + JIT)
o Tracks memory accesses, synchronization, and happens-before relations
o Fast stack reconstruction for past accesses, better error messages

e Comprehensive comparison with Java TSan

e Experimental evaluation on DaCapo, Renaissance, Quarkus

e Impact: Found unknown races, upstream fixes

Algorithm (briefly)

e Happens-before with vector clocks

Algorithm (briefly)

e Happens-before with vector clocks
o Every thread gets a vector clock

Algorithm (briefly)

e Happens-before with vector clocks
o Every thread gets a vector clock
o Every lock gets a vector clock

Algorithm (briefly)

e Happens-before with vector clocks
o Every thread gets a vector clock
o Every lock gets a vector clock

Algorithm (briefly)

e Happens-before with vector clocks
o Every thread gets a vector clock
o Every lock gets a vector clock

Algorithm (briefly)

e Happens-before with vector clocks
o Every thread gets a vector clock
o Every lock gets a vector clock
o Thread synchronizes with lock
m Clocks get synchronized

Algorithm (briefly)

e Happens-before with vector clocks
o Every thread gets a vector clock
o Every lock gets a vector clock
o Thread synchronizes with lock
m Clocks get synchronized

Algorithm (briefly)

e Happens-before with vector clocks
o Every thread gets a vector clock
o Every lock gets a vector clock
o Thread synchronizes with lock
m Clocks get synchronized

Algorithm (briefly)

e Happens-before with vector clocks
o Every thread gets a vector clock
o Every lock gets a vector clock
o Thread synchronizes with lock
m Clocks get synchronized

Algorithm (briefly)

e Happens-before with vector clocks
o Every thread gets a vector clock
o Every lock gets a vector clock
o Thread synchronizes with lock
m Clocks get synchronized
m Captures happens-before

Algorithm (briefly)

e Happens-before with vector clocks

©)

©)

©)

Every thread gets a vector clock

Thread 1

[1. 0]

Every lock gets a vector clock
Thread synchronizes with lock
m Clocks get synchronized

m Captures happens-before

e On every access

©)

©)
©)
©)

Log minimum info: thread ID, thread time, write
Fast representation, shadow memory
Remember 4 “last” accesses

Thread 2

[1.1]

Compare, if no happens-before and one access is a write, race!

m Reconstruct stack for previous access, print report

Design Points

e Shadow Memory for efficient metadata storage
o Stores access log, stack reconstruction logs
o 4x Heap size
e GC precision trade-off
o GC migrates objects during compaction, evacuation, tenuring
o Very high cost of tracking migrations and relocating shadow access logs
o How about scrapping all info on every GC? (Turns out warnings rarely lost!)

o Unmap-remap the shadow: Very fast, less total memory used

Design Points

e GC object migration remains an issue
o Every object is also a lock
o Solution: Vector clock embedded in object header
o Follows object migration

o Works with every GC

Design Points

e Stack trace reconstruction: “Time Travel” for past accesses
o Reconstruct stack trace for past accesses (but fast)
o ldea: Use stack event buffers, append-only, restart logging often
o Immutable buffers, pointers from accesses work
o “Replaying” stack is fast, small buffers
e Report Map for concise, non-duplicate race warnings
o Based on source line information (Reconstructed from BCI)
o Avoid reporting race for same lines of code, even if different objects

o Reduces redundant warnings, easier to debug

Implementation

e Instrumented interpreter bytecodes (x86) and C1/C2 IR to cover loads/stores
o C1 & C2 instrumented during parsing phase
m Intentionally limit optimizations to account for all accesses
o On every access: create access cell, check for race, add to shadow memory log
e Add callbacks on most java.util.concurrentsynchronization mechanisms
o Establishes happens-before edges

e Instrument every synchronized method/block enter/exit

Design comparison: MaTSa vs Java TSan

Nuance
Execution tiers

Volatile fields

Static class initializers

Thread.join

MaTSa
Interpreter + C1/C2 JIT

Ignored

Separate internal vector
clock

Modeled via callbacks at
stop/join

Java TSan
Interpreter-only

Modeled as a lock/unlock
operation

Reuses class object vector
clock

Not modeled

Volatile Fields

1 public class VolatileFalsePositive {

2 public static volatile int x = 15;
3 public static int y;

4 public static void main(String[] args) {
5 Thread t1 = new Thread(

6 0O —>{

7 int tmp; // int tmp = x;
8 while ((tmp = x) != 42);
9 y = tmp + 1;

10 X = 2;

1 s

12 Thread t2 = new Thread(

13 0O ->{

14 int tmp = x;

15 y = tmp + 1;

16 X = 42;

17 1

18 }

Volatile Fields

1 public class VolatileFalsePositive { 1 public class VolatileFalseNegative {
2 public static volatile int x = 15; 2 public static volatile int x = 15;
3 public static int y; 3 public static int y;
4 public static void main(String[] args) { 4 public static void main(String[] args) {
5 Thread t1 = new Thread(5 Thread t1 = new Thread(
6 0O —>{ 6 O ->{
7 int tmp; // int tmp = x; - int tmp = x;
8 while ((tmp = x) != 42); 3 y = tmp + 1;
9 y = tmp + 1; 9 X = 2;
10 X = 2; 16 1);
1; Thrégz’tz = new Threadt 11 Thread t2 = new Thread(
13 G wd 1 0>t
s _ 13 int tmp = x;
14 int tmp = Xx;
5 y = tmp + 1; 14 y = tmp + 1;
16 X = 42; 12 X = 2;
17 D; 16 P
s } 17 }

Evaluation setup

e Benchmarks
o DaCapo (subset on JDK 17/21)
o Renaissance
o Quarkus (3.8)
e Metrics: Runtime, memory used, number of (grouped) race warnings

e Environment: Xeon Gold 5512U (28C/56T), 256 GiB RAM; G1 GC used

Performance Results

Benchmark MaTSa Java TSan Warnings (grouped)

MaTSa | MaTSa Xint | JDK17 | Slowdown || Java TSan | JDK21 | Slowdown || MaTSa | Java TSan
avrora 1m56s 3m13s | 1ml15s 1.55% 8m23s | 1m1l4s 6.80x 7 46(7)
batik 0m36s 1mls | Om4s 9.00x 1m8s | Om4s 17.00x 0 0
biojava 7m30s 25mé6s | Om12s 37.50x 25m13s | Om10s 151.30x 0 0
eclipse 6m0s 13m45s | 0m37s 9.73x 13m30s | Om34s 23.82x 143 134(36)
fop 0m22s Om46s | 0Om4s 5.50x Om52s | Omd4s 13.00x 0 0
graphchi 6m32s 11m52s | 0m9s 43.56x 23m10s | Om8s 173.75x 0 0
jme 0m17s Om35s | O0m38s 2.12x 0m34s | 0m8s 4.25x 0 0
jython 2m20s 7m22s | 0m9s 15.56x 8m24s | 0m9s 56.00x 0 0
luindex 2m37s 9m24s | Om7s 22.43x 7m9s | OmS8s 53.62x 0 0
lusearch 1m38s 4m46s | 0m3s 32.67x 79m56s | Om38s 599.50x 18 11(10)
pmd 1m13s 3ml16s | 0m9s 8.11x 68m43s | Om8s 515.38x 58 110(57)
sunflow 3m44s 4m2s | Omds 56.00x 152m55s | 0mé6s 1529.17x 5 5(5)
xalan 0m40s 0m40s | Om3s 13.33x% 32m20s | Om3s 646.67x 37 28(10)
zxing 1m3s Im2s | Om3s 21.00x 1m04s | O0m3s 21.33x 21 22(17)

Memory Usage

Rkl MaTSa Java TSan

MaTSa | JDK17 | Overhead || Java TSan | JDK21 | Overhead
avrora 1.54 0.14 10.65x 0.50 0.13 3.80x
batik 3.77 0.59 6.45x 3.13 0.50 6.34x
biojava 5.55 2.15 2.58x 14.81 2.19 6.76x
eclipse 22.51 1.28 17.59x 10.07 1.40 7.19x
fop 4.73 0.52 9.22x 1.77 0.58 3.08x
graphchi 7.15 1.93 3.70x 9.57 2.82 3.39x
jme 0.47 0.22 2.06x 0.93 0.19 4.80x
jython 18.40 1.03 28.61x 11.30 1.34 8.43x
luindex 0.74 0.90 0.81x 3.41 0.96 3.55x
lusearch 10.08 3.25 3.10x 10.16 2.40 4.23x
pmd 17.87 2.62 6.82x 19.70 1.87 10.53x
sunflow 6.52 3.15 2.07x 14.33 2.74 9.23%
xalan 8.88 1.44 6.17x 4.52 1.42 3.18x
zxing 4.10 1.65 2.48x 3.66 1.05 3.49x

Race Warnings in Renaissance

Benchmark Warnings | Scala Related | Runtime
akka-uct 252 221 5m50s
als 211 114 1m48s
chi-square 76 22 1m30s
db-shootout 87 0 5m19s
dec-tree 177 67 0m57s
dotty 5 5 0m44s
fj-kmeans 31 0 2m51s
future-genetic 83 0 3m28s
gauss-mix 176 134 18m9s
log-regression 210 100 1m5s
mnemonics 0 0 2m40s
movie-lens 304 172 5m4ls
naive-bayes 215 106 3mb5s
page-rank 132 46 4mds
par-mnemonics 26 0 2m13s
philosophers 15 13 2m25s
reactors 42 30 7m24s
scala-doku 0 0 2m43s
scala-kmeans 0 0 0m21s

Overall Results

e Performance: MaTSa is ~15x faster on average than Java TSan
o Up to 56x faster

e Scale: MaTSa handles large apps (e.g., Spark via Renaissance)
o Impractical with interpreter-only tools

e Memory: Overhead dominated by shadow/stack history

The memory overhead paradox

e Observed while running luindex

o RSS peak ~740MB with MaTSa enabled

o RSS peak ~900MB with MaTSa disabled
e JIT instrumentation during the parsing phase prevents certain optimizations
e Results in more garbage collection cycles

o MaTSa triggered 31 GCs

o Vanilla triggered 8 GCs

A notable race

private static Integer globalldx = 0;
private static int inc() {
int rtn;
synchronized (globalldx) {
// globalldx += stride means:
// globalldx = new Integer(globalldx + stride)
rtn = globalldx += stride;
}

return rtn;

O 0 N S e W N =

—
(e
-

Limitations

e Custom synchronization not auto-modeled

e Scala/akka library internals may create missing HB edges
o False positives (see Renaissance results)

e Constructor-internal writes may appear racy

o Cannot be modeled away, as object leakage cases matter

Conclusion

MaTSa is the first fast, precise JMM-aware race detector
Integrates cleanly into the JVM
o Usable in production-sized code
OpenJDK-native implementation
o JIT support
Extensible to other managed languages (e.g., Kotlin, Scala)

